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Abstract. We categorize classes of coupled nonlinear Schrodinger equations which allow 
generalized similarity solutions, using the approach of Clarkson and Kruskal (1989). In 
all cases, the resulting pair of ordinary differential equations belongs to a single class, 
presented here as equations (2.6). Certain cases allowing solution in terms of familiar 
functions are identified. An alternative approach, presented in section 4, shows that only 
twoconditions need be placedan the four real and two complexcoefficientsin thegoverning 
equations in order that solutions generated by an arbitrary solution of the (integrable) NLS 
equation exist. Applications to some standard coupled systems arising from fibre optics 
are given. 

1. Introduction 

Many descriptions of two nonlinearly coupled modulated wavetrains, particularly in 
fibre optics, lead to a coupled pair ofnonlinear Schrodinger (CNLS) equations. Although 
the single nonlinear Schrodinger (NU) equation with constant coefficients 

iu, = u,+lu12u (1.1) 
is completely integrable by the inverse scattering transform (Zakharov and Shabat 
1972), CNLS systems with constant coefficients are found to be completely integrable 
(Zakharov and Schulman 1982) only in the case 

(1.2) iu,=u,+(lulZ+lu12)u iu, = u, + ( 1  uIz + I V I ' )  u 

for which Manakov (1973) found explicit soliton solutions. 
As the technology of optical fibres for long distance communication and signal 

processing has rapidly developed, a large variety of CNLS systems have arisen and 
been investigated analytically and numerically. For example, constant coefficient pairs 
of equations of the class 

iA:+A:s*AA'+ KA'+ (IA*IZ+ hlATIZ)A* = O  (1.3) 
where A'(s, T) and A-(s, T) are two complex mode-amplitudes in a birefringent fibre 
while A, U and h are real constants, have been treated numerically by Trillo et al 
(1989). They include as special cases the systems (i) A = 0, h = 0 describing directional 
couplers (Trillo er al 1988, Kivshar and Malomed 1989) and (ii) A = 0 for birefringent 
fibres, for which Florjannyk and Tremblay (1989) and Kostov and Uzunov (1992) 
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have identified various families of solutions involving a factor exp(ii2.r) multiplying 
Jacobian elliptic functions of s. This case (ii) also corresponds to two other classes of 
known exact solutions. The pair of equations 

N Manganaro and D F Parker 

iu, + U,, + (I uI2 + u]ul')u + (1  - u)u2u* 

iu, + us + (Iulz + ulul ' )u + ( I  - u)u'u* e"" = 0 

= 0 
(1.4) 

is reducible to the system (1.3) with A = 0, h = 2u-I- 1 by the substitutions U = 
(2u)-"*(A++A-) exp(-iu),  U =  i(2u)-*/'(A+-A-) exp(iKT), while the pair of 
equations 

ie:+ e;* KP*+ a(le+I2+ le-1')e'f 6{(e")'+ (e-)'),** = 0 (1.5) 
may be reduced to (1.3) with A=O, k=1+26 /a  by the substitutions e+= 
( 2 ~ ) - ' ~ ~ ( A ' + A - ) , e - = i ( 2 a ) ~ ' ' ~ ( A ~ - A + ) ,  T =  t , s  =xHere,andhenceforth,*denotes 
a complex conjugate. For (1.4), Christodoulides and Joseph (1988) showed that 
stationary (frozen) states, i.e. waveforms with envelope depending only on s, satisfy 
an integrable Hamiltonian system of ordinary differential equations. They determine 
some novel 'vector soliton' solutions of these in terms of hyperbolic functions. For 
(1.5), Tratnik and Sipe (1988) determine formulae describing some more general 
polarization-modulated stationary states. 

Other sets of equations for which explicit exact solutions have been determined 
include 

i(u:* Su:)*Au*+ u~+(lu*12+hluTiZ)u* = O  (1.6) 
for which Tratnik (1992) has found single and multiple 'twisted soliton' solutions 
which may exist due to non-vanishing group delay difference (6 # 0) 

i (u : * tu ,L)+Ku~+( Iu*J2+hluS12)u*  = 0 (1.7) 
for which Aceves and Wabnitz (1989) have obtained 'Bragg solitons' describing the 
self-trapping of two counter-propagating beams in a periodic nonlinear medium. 
Additionally, various related systems have been investigated numerically: 

i(A:i S A : ) + A ~ , ~ A A ' + K A ~ + ( J A ~ ~ ~ + ~ ~ A = I ~ ) A = = O  (1.8) 
(Wabnitz et al 1990) which introduces into (1.3) the group delay difference 6: 

iA:+P*A&+R*(IA"1'+2jA']')A*=O (1.9) 
in which Trill0 et al (1988) investigate the stability of an exact solution in which a 
hyperbolic secant for A- in the normal dispersion (p -<O)  mode is coupled through 
cross-phase modulation to a hyperbolic tangent for A t  in the anomolous dispersion 
(P+> 0) mode: 

i(A?*i3A:)+~A~exp(TZiuT)+A:+(lA*l~+ hlA'l')A*=O (1.10) 

derived for periodically twisted birefringent fibres by Wabnitz et a/  (1991) and further 
investigated by Aceves and Wabnitz (1992): 

i(u:* ~ u ~ ) - K * ( T ) u ~  exp(T2iuT)f U:,+ (lu*lz+uluS12)u* 

+( I  - u)(u')~u** exp(~4 iu r )  = 0 (1.11) 

with U = $  and K'(T) =[K-(T)]* a random coupling coefficient, which De Angelis et 
al(1992) use to describe random coupling between amplitudes U* of linearly polarized 
modes with a group delay difference (6 # 0). 
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Other systems with coefficients depending on t (or T), the distance along the fibre, 
arise naturally in long-distance communications where amplification occurs periodi- 
cally at spacing short compared to a soliton evolution distance. Under these conditions, 
effective constant-coefficient systems are obtained using the guiding-centre description 
(essentially a multiple scales formulation). However, this situation, like that of direc- 
tional couplers and pumped fibres (Abdullaev eta2 1989), motivates the need to classify 
CNLS systems with variable coefficients for which classes of explicit solution can be 
found. In this paper, we conhe attention to systems 

(1.12) i;: = CL + ? * ( t ) ~ *  + i * ( t ) Z  +{&(t)l  ;+I2 + &t)l~-l*}ci* 

with &,  
equations (1.3)-(1.5) can be transformed into this form (see appendix). 

E R, ?+, & E  C, which generalize the class (1.3), since the system (1.6) like 

2. Similarity reductions and some special solutions 

This section is devoted to the similarity analysis of the general pair of coupled NLS 

equations 

i u i  = u : ; + { ~ ~ * ( t ) l u + 1 ~ + p * ( f ) j u - 1 ' } ~ * +  sl(t)u7 (2.1) 

with a*, p,cR, E+ E C, obtained from the canonical system (1.12) by the transforma- 
tions 

ii*(x, t ) = p , ( t )  exp(-ir,)u*(x, t )  
P : ( t )  ?* = r:(t) + i 7 

where here the henceforth primes denote ordinary differentiation. 

for similarity solutions of (2.1) in the general form 

U * ( X ,  I) = U*(& t, u * ( z ) )  

Following the recent approach proposed by Clarkson and Kruskal(1989), we search 

(2.3) 2 = z (x ,  f) 

with the requirement that substitution of (2.3) into (2.1) should yield a pair of ordinary 
differential equations for u,(z). This process determines the functional forms of U' 
and of z(x ,  f ) ,  as well as imposing functional restrictions on the coefficients entering 
(2.1). In the present case, it is easily ascertained by direct substitution into (2.1) that 
(2.3) specializes to 

u*(x,  t )  = m d t ) f * ( z )  exp[irp'(x, 111 (2.4) 

where 

z = x e ( t ) +  IC.((). (2.5) 

In (2.4) and (2.5), m,, Vi, 0 and IC. are real functions to be determined, whilef,E C. 
By insisting that x and t do not arise explicitly in the ordinary differential equations 

governing f*(z), it is found after considerable manipulation that six cases arise. In. 
each, the resulting differential equations can be put into the form 

(2.6) 
where p, v, A, K * ,  5 ,  and p* are real constants, Z* are complex constants and primes 

yL(z) + (p+ vz +Az2+iK,)f, +{~* l f+12+B; - l f -12} f*+  Lf- = O  
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denote differentiation. The six cases are: 

(V=constant). These solutions exist provided that 
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1. Travelling waves. 2 = x - 2 vt, m, = exp( - K e f ) ,  p* = p(x, t )  = - vx + ( v2 + p)t 

(2.7) cy, 6,  p* = p; e2w-r &, = 8, e*(x--x+) 

while the coefficients in (2.6) are specialized so that U = 0, A = 0, thus making the 
system become autonomous. 

2. Accelerating waves. z=x+u t2 ,  m,=exp(-~,t), p*=v(x ,  t ) =  v x t + ~ u 2 f 3 + p t ,  
with the coefficients in (2.1) taking the same forms (2.7) as in case 1. In the ODES (2.6) 
we have U # 0, A = 0, so that the system becomes a coupled pair of PainlevO I1 type. 

3. z =  ( x +  vt)t-"', m*= t-'"*+d) ( V = constant), 

cp* = p(x, t )  = ~ t - ' ( v 2 t 2 + 2 v x t - x 2 ) + ~  In r. 
These solutions exist provided that 

(2.8) E - i y - - * - l ,  a* = 6*t2"+-I  p* = B z f 2 " - - I  i- - 
The corresponding choice of coefficients in (2.6) is v = O ,  A =&. 

4, z = xt-'+ ut-', m, = t-4 exp(K,t-'), 
p"=p(x, t ) = - b X 2 t - ' - u X f - 2 - - Y 2 t - 3 + p L f - ' ,  

These solutions exist provided that 

ai = E*$- ]  e -2*+1-1 p* = f & I  e-2*-r-l E*[-l e * ( K * - 4 1  (2.9) 
with A = 0 in (2.6). 

5. z = ( x +  Vt)(t2+S2)-*, m,=(t'+s2)'!exp[(--Kg/6)tan-'(t/6)], p*=p(x ,  I ) =  
f ( ~ ' ~ ' t + 2 ~ ' V ~ - t x ~ ) ( r ~ + S ~ ) - ' + ( p / S )  tan-'(t/S) (v, 8 are constants). These sol- 
utions exist provided that 

a, = a,(('+ ~ ~ 1 - b  e x p [ ( 2 ~ + / ~ )  t an - ' ( r /~ ) ]  

pi = P * ( t 2 +  s2)-i e x p [ ( 2 ~ - / ~ )  t an - ' ( t /~ ) ]  
E= = i , ( t 2  +8 ' ) - ' exp [~- ' (~ . -~*)  t an - ' ( t /~ ) l  

(2.10) 

and yield coefficients in (2.6) of the form U = 0, A = -is2. 
p* = p(x, t )  = 

- ~ ( S ~ V ~ ~ + ~ S ~ V X  + txz ) (  tZ - a')-' +(p/26) Inl( t - S ) / ( t +  s)[ ( V, 6 are constants). 
These solutions exist provided that 

6. z =  (x+ Vt)( t' - a')-$, m, = (t ' -  a')-![( t + s ) / ( t -  S)]"*'26, 

a* = E,(?-  s2)-*((1 - a)/([+ S ) ) X + / S  

p* = B*( r ' -s2 ) - " ( t  - S ) / ( t +  S))"-,- 

E* = ~ * ( t 2 - S 2 ) - - l ( ( t - S ) / ( t + S ) ) * ( X - - K * ) ' 2 6 ,  

(2.11) 

The corresponding set of coefficients in (2.6) is Y = 0, A =$a2. 
The similarity variables z arising in Cases 1-3 are all included amongst those found 

in Parker (1988) by Lie group analysis for equations (2.1) with E * = O  and with a,, 
p .  all constant. This, together with the forms found for a,, p. and in each case, 
suggests that existence of similarity solutions (2.4) is closely allied to the ability to 
reduce coefficients in (2.2) to constants. The simplifications found are as follows: 

Cases I ,  2: U* = m.(t) exp(ipt)u*(x, f) 

iu: = v:,+(d,lv+[2+B+IU-12)u*+(iK*+CC)ut+ i,u3 (2.12) 
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Case 3: U*= r’m,(t) exp(ip In t)u*(x, t)  

io:= U$, + ( ~ , l ~ + l ~ + ~ = 1 ~ - 1 ~ ) o *  + t-’{(iK* + p)  -$}U*+ t - ‘ ~ , u ~  (2.13) 

Cases4, 5and 6: ~ * = ( t ’ + D ) ~ m ~ ( t )  exp(ir(t))u’(x, t )  

iu: = u L +  (&*lu+12+ p*,lu-1’)u’+ ( t 2 +  D)-’{(iK+ +p  -$t )o*+ E , V ~ }  (2.14) 

with D=O and T(r)=pt-’ (Case 4), D = S 2  and r ( t ) = ( f i / 6 ) t a f L ( t j 6 )  (Case 5 ) ,  
D =  -62andT(t)=(p/S)  Inl(-S)/( t+6)l  (Case6). In thesethreecasestherespective 
forms of ( t ’ + ~ ) l m * ( t )  are 

tm,(t)=thexp(K,t-’) (Case 4) 

(t’+~~)~m~(t)=(t’+~’)~exp{-~-’K, tan-’(t/s)} (Case 5) 

(Case 6) 

The above reductions show that, for a pair of equations (2.1) with constant 
coefficients but non-vanishing linear undifferentiated terms, the only permissible simi- 
larity solutions are the travelling waves and accelerating waves. More generally, we 
conclude that similarity solutions cannot arise for (2.1), unless that system can be 
reduced to one of the forms (2.13) or (2.14) with constant coefficients in the nonlinear 
and differentiated terms and with the remaining linear terms having either constant 
coefficients, coefficients proportional to t-’ or with multipliers ( I 2 +  D)-‘,  f ( t ’ +  D)-’. 

Some exact solutions 

To conclude this section we describe certain closed-form solutions to (2.6) which may 
be obtained in special cases. To achieve this, we seek particular solutions in the form 

f+(z) = p ( z )  e19(’l f-(z) = a p ( z )  eiq(:’ (2.15) 

where p ( z )  and q ( z )  are real functions, while a and c are real constants. 
Substituting (2.15) into (2.6), separating into real and imaginary parts, writing 

Z* = Re E,,  .& = Im E* and requiring that the multipliers of the various types of term 
trigonometric in q ( z )  vanish individually leads to just the two possibilities c=*l ,  in 
each of which a’@+ -8)+ &+ - & _ = O .  The other conditions in these cases are 

1. c = 1, requiring i(aE++ a-’E-) = K+ - K -  or equivalently 

LIZ<+- E*-fa(K+-K_) =o with a’;, = E-. (2.16) 

Here f-(z) = af+(z) ,  with J+(z)  governed by 

f”i(z) +{G+ uz +hz’+iS +Alf+[’}f+ = 0 (2.17) 

where 6 = p+ (E+;-)$, S = K + +  a;+, A =  E++ E&+/;+. 

2. c = -1, requiring aE+ -a-‘E?: = 0 and K +  = - K -  or equivalently 

aZ~++<_=O a 2 E  + - - E -  - with K+ = -K- . (2.18) 

In this case, f-(z) = af+Y(z) with f+(z) governed by 

f!!(Z) + {p+ YZ f hZZ+ iK+ +hlf+12}f+ + aE+f? = 0 (2.19) 

with * denoting a complex conjugate. 
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In terms ofp(z)  and q ( z ) ,  equation (2.17) becomes 

p " ( z )  - p ( q ' ) * + ( f i +  vz+Ar2)p + A p 3 =  0 2p'q'+pq"+ s p  = 0 (2.20) 

while, for c =  -1, equation (2.19) gives a system generalizing (2.20), with 

8 = K + + a ( i +  cos 2q-E+ sin 2q)=  8 ( z )  

f i =  @+a(;+ cos 2 q + i +  sin 2 q ) -  f i ( z ) .  

Thus, if the real constants E,, pi, EA, Z, and K* with a =* ( ; - /E+) *  and c = *I satisfy 
E-(p+-~-)+Z+(a'+-6_)=O and (2.16) or (2.18), then to any solution of the system 
(2.20) there corresponds, through (2.15), a solution of (2.6). 

In the following, we confine attention to case 1 with K +  = -a i+  (6 = 0), so obtaining 
from (2.20) 

q'(z)  = qOP-* p " ( Z ) + ( / I +  v z + A ~ * ) p + i \ p ' - q ~ p ~ ~ = = O  (2.21) 

where qa is an arbitrary constant. We then identify the following special cases: 
(i) If A = qa=O and A<O, the transformation 

p = vf(-2/.4)'u(z3 i = - v - 3 ( p + v z )  (2.22) 

reduces (2.21), to Painlev6 I1 (see Ince, 1956) 

vyi) =2u3++iv. (2.23) 

This possibility arises for Cases 2 and 4 and allows the possibility of asymmetric 
localized pulses with algebraic decay as i+ -CO (see Ablowitz and Clarkson, 1991). 

(ii) If A = q O = A = O ,  setting i = - ( z + b / v )  reduces (2.21) to the Airy equation 

p"(i) - i p ( i )  = 0 (2.24) 

which can be integrated in terms of Bessel sunctions of order f (see Whittaker and 
Watson 1927). These solutions, in terms of solutions of the linear equations (2.24), 
arise only when E + / p +  = E J p -  = -E- / ;+  <O. They require that the terms in braces 
in (2.6) simultaneously vanish identically. The solutions can apply only to Cases 2 
and 4. 

(iii) If Y = A = 0, equation (2.21) becomes autonomous and may be integrated to give 

( p ' ) * + / ~ p ' + f h p ~ + q ~ p ~ * =  q ,  =constant. (2.25) 

This may be reduced for f 0, by using the transformation 

U(;) = - ( p z  + sgn A i= ( f IA])b  

to 

u ' ( i )  = * (4u3-q2u-  q,)$ (2.26) 

where 

q2 = 812-Z{ffiZ+ qlA] q 3 = 8 . 4 - ' { ~ ~ ' + q ~ A 2 + f q , f i i )  sgn A. 

Equation (2.26) may be solved in terms of elliptic functions or, more, generally, the 
Weierstrass P-function (see Whittaker and Watson 1927). 

As a particular case we find that, for qo = q ,  = 0, /I < 0 and A > 0, the general solution 
of (2.25) has the form 

p ( z )  = A. sech[Ao(z - zO)] A?,= -2fiZjA (2.27) 
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where zo is an arbitrary constant ,and the similarity variable is z = x - 2 Vt (Case 1) or 
z = x / t  (Case 4). 

= --E_/;+ < 0 giving 
A = 0 as in (ii), the solution to (2.25) is found as 

Additionally, for the exceptional situation a+/p+ = 

P 2 =  I q , + ( q : - s 4 3 b  COS(2P~Z)}/2fi 

omitting a trivial translation in z. 
(iv) If A = qo = 0, h < 0, equation (2.21) reduces to 

p " ( ; ) - ( a 2 2 - f i ) p = o  (2.28) 

where .?= ( -4h) t ( z+4vh-1 ) ,  f i  =&h)!(4hp- v'). Equation (2.28) is Weber's equation 
which can be solved in terms of parabolic cylinder Whittaker functions. This possibility 
arises only for &+/a+ = L /B  = -;-I:+ < O  with Case 5 .  An equivalent equation for 
h > 0 can arise for Cases 3 and 6. 

3. Solutions with amplitude depending only on t 

The previous section concerns reductions in terms of a similarity variable z(x, t )  for 
which z, # 0. In this section our aim is to consider the degenerate case z, = 0, seeking 
particular solutions of (2.1) in the form 

u"(x, t )  =f*(t) exp ip'(x, t )  ( 3 . 1 )  
in which f* and p* are real. In these solutions, l u * l = f = ( t )  depends only on the 
evolution coordinate t. 

Substituting (3.1) into (2.1) and separating the real and imaginary parts yields the 
following four real differential equations involving the functions fi and pi as well as 
the coefficients a+(f ) ,  p,(t) and & * ( t ) = p * ( t )  exp{iu*(f)}, (pi, u,EW): 

f,q2 -A +p& sin(pT - p*+ CT*) = 0 

f * I d  - (a:)2+nif:+P*ft}+P*fl cos(pT - q*+u*) = 0. 
(3.2) 

First we consider the case E* = 0, for which equations (3.2) can be integrated to give, 
through (3.1), the solutions 

where R ,  are given by integration of 

(3.3) 

(3.4) 

and m:, t , ,  b, are arbitrary real constants. It may be observed that the solutions (3.3) 
to (2.1) exist for every choice of functions a*(f).,  &.(f), which affect only the local 
'frequency' p:. In particular, it may be noted that solutions (3.3) apply to the system 
(1.6), since it is shown in the appendix that (1.6) may be reduced to the constant 
coefficient system (A.5). Moreover, (AS) is the system for which Parker (1988) first 
found a special case of solutions (3.3) in which f-= f + .  
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We now consider E+ # 0, E -  # 0 and investigate the possibilities for which ps - p* + 
U* = d, are each constants. These require that the arguments U* of E* are related by 
u+(t )+u_(f )  =d++d-=constant. We write 

fJ* = cik 6( t )  p+ - p- = 6( t )  + t(d_ - d,) c i  =f(d+ t d-) .  (3.5) 

This gives, after substitution into (3.2) followed by considerable manipulation, the 
following solutions to (2.1): 

along with the conditions (3.5) on u++u- and 

In this solution, and in the constraint (3.7), the functions !*(I) are solutions of the 
ordinary differential equations 

(3.8) 

Thus, given the expressions p.(t) ,  if we integrate equations (3.8) and ensure that a,( t ) ,  
P * ( t )  are consistent with (3.7) while u+(t)+u-(f)=d++d-,  then the solutiou (3.6) 
satisfies (2.1). 

Alternatively, by assigning the functions &t),  we may determine classes of 
coefficients a,(t), P+( t ) ,  p & ( t ) ,  c(t) and constants d,, to which allow physically 
interesting solutions to (2.1) of the form (3.6). 

&O = ( p d t )  sin d,)?&). 

3.1. Bound-state solutions 

It is possible to find another class of solutions of the form (3.1) by following a different 
strategy, based on the fact that complex solutions F,(t)  of the coupled differential 
equations 

i(  V+ l ) F ; ( t )  = AF++ F-+(IF+I’t hlF-I’)F+ 

i( V -  l ) F ! ( t )  = F+ t hF-+(hlF+IZ+JF_12)F- 
(3.9) 

(where K, A and h are real constants) have been developed by Aceves and Wabnitz 
(1989) as a generalization of the equations of the classical massive Thirring model 
(Chang et al, 1975). Since pulse-like (bound state) solutions of (3.9) are known, we 
seek solutions of (2.1) in the form 

U*(% t )  = f + ( f ) F d t )  exp[iv*(x, 01 (3.10) 

for suitable real functionsf,(t), p*(x, t).  with F,(t) satisfying (3.9). 
After substituting (3.10) into (2.1) and invoking (3.9), it is possible to show that 

the system (2.1) admits two cases ofthe type (3.10). In one case, the coefficients al(t), 
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p d t )  and ~ . ( t )  must have the forms 

where e,, h, A, V, tu and ,yo are arbitrary real constants. In this case, equations (2.1) 
may be reduced by the substitution U*= c,w* exp( i ix0) to the form 

(3.11) 

while the solutions to (3.10) have the form 

- (x -xo)~  A 
f * ( t )  =- a*(% 0 = +- f * X U .  (3.12) C* 

4(t - tu)  V * l  ( t - t o Y  

In the second case, the coefficients a,, p* and E* are the same as above, except 

u*=c,  exp[i{ixo+At/(V*l)}u*(x, t ) ]  (3.13) 

that the factor I - tu is removed from a, and p.. Correspondingly, the substitution 

reduces equations (2.1) to the form 

( V i  l)(iu:- = (Iv*I2+ hluT12)u*+Av*+ ur (3.14) 

while the corresponding solutions (3.10) have 

f * ( O  = e* q = ( x ,  t )  = MY - wt T A t (  V2- 1)-' *xu (3.15) 

where w and m satisfy w + m2 + AV( V2 - l)- '  = 0. 
Since equations (3.9) arise for every travelling wave solution 

u*(s, T )  = e-'"'F,(t) t = - - ( s + V 7 )  

of the system (1.7) with 6 = 1, K = 1, the special solutions given by Aceves and Wabnitz 
(1989) in terms of a complex hyperbolic secant describe solutions of (3.11) and (3.14). 
Solutions to (3.9) are constructed by writing F,(t) = F J t )  exp[i(@iO,)], with fi=, 0 
and @ real, andobserving that theequation ( V +  l ) F + f i i ( t ) +  ( V -  l )F-FL(f )  = Oallows 
solutions with fie? 0 simultaneously only if F+ - p F-,  with p = {( 1 - V ) / ( l +  V)}&. 
Then, by writing F& = p"g( t )  we find that 

~ ' ( 5 )  = y sin 20 (3.16) 
where .$= ( 1  - V2)-'t= - (s+  V7)(1- V2)-j, g ( t )  = yy(<),  y-'= h + ( l +  V2)/(1 - V2), 
A=A(1-V2) -& with @'(()= VA+2Vg2(1- V2)-'. 

The system (3.16) has a first integral (Chang et al 1975) y 2 ( A + ~ 2 + c o s 2 0 ) =  
constant, which allows localized (bound-state) solutions only if y 2  = -2(A+cos 2O), 
so @(<)= VA<+4y2V(1-  V2)-'B(.$)+po. Integrating (3.16)* then gives 

tan 0 = cot(fQ) coth ,y 
f ( ~ ) = y y ( < ) = y s i n  Q{cos2($Q) cosh2X+sin2(&) sinh2,y}-L 

* 2 -  4 " 2  

e'(.$) = n+y2+ cos 2 0  

x = (<-to) sin Q cos Q = A 

= y sin QIsech(X * ifQ)I 
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so that the general bound-state solution i o  (3.9) is found as 

F,=C,sin Q l s e c h ( x + i f Q ) I e x p i ( ~ ~ 0 ) = i i C , s i n  Qe'"sech(xFiiQ) (3.17) 

where 

We conclude that, if a coupled system may be reduced to the constant coefficient 
form (3.14), solutions exist in which IF+] and 1F-I depend only on t and are localized 
near t = ?. We observe that this possibility arises only for - 1 < V <  1, and that the 
self-trapping giving rise to the bound-state solution requires counter-propagating 
signals with anomolous and normal dispersion respectively. The corresponding 
solutions of (2.1) have 

lu*l=le.C.sin Qsech(x+tiQ)I. 

4. Solutions described by a single NLS equation 

The system (1.3) with A = 0, K = 0 possesses 'linearly polarized' solutions, in which 
A'=e-*'"A- (a a real constant). Similarly, for certain variable-coefficient CNLS sys- 
tems, reduction to a single variable-coefficient NLS is possible (Ryder and Parker 1992). 
The aim here is to generalize this feature, by writing in (2.1) 

u+(x, t )  = p ( x ,  t )  e'q(st)u-(x, t )  (4.1) 

and imposing a simple requirement on the real functions p(x, t )  and q(x, t ) .  
By substituting (4.1) into (2.1) and requiring that the coefficients of U;, lu-I2u- 

and U -  vanish individually from the compatibility condition, we make the deductions 
p = p ( t ) ,  q = q ( t )  with 

2 (a+- a _ ) p  +p+ -p-  =o 
pq'(t) +p+ cos(*- - q)  - p * p _  cos(u_+ q) = 0 

p'( I )  - p+ sin(cr+ - q) + p2p- sin( r x  + q) = 0 

(4.2) 

where E+ = p *  exp( ia , ( t ) }=~*(t ) f iV~(f ) .  Additionally, U-must satisfy thesingle NLS 
equation 

iu; = U& + H(t)lu-I2u-+ IS'( 1)  + iR'(t)}u- 

in which H ( t ) = o - p 2 + p - ,  S' ( t )=pp-  cos(a_+q), R'(t)=pp- sin(u-+q). Further- 
more, by the transformation 

u-(x, 1 )  =eR-"u(x, t )  (4.3) 

iu, = u,+ii(t) lv12u (4.4) 

it is simple to reduce this to another NLS equation 

in which S(t) = H ( t )  exp[ZR(r)]. 
Consequently, the system (2.1) possesses solutions corresponding to any solution 

of (4.4) whenever the functional form of the eight real coefficients d t ) ,  p+(t ) ,  p , ( t )  
and u,(t) involved in (2.1) is compatible with the system (4.2). Since these may be 
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rearranged to give 

a-P+ - a+P- H ( t )  = 
(Y---Ly+ (4.5) 

sin[q-e(t)l=-P-'p'(t) 
where v+ -p*v- 3 P sin 8, fi+ +pzfiL-  = P cos 8, the compatibility condition for (4.1) 
reduces to the equation obtained by substituting p ( t )  and q ( t )  from (4.5) into (4.2),. 
This provides just one restriction on the coefficients in (2.1). 

For (4.4) with general real coefficient H ( t ) ,  several results are known. For example, 
Joshi (1987) developed the PainlevC analysis for (4.4) obtaining the same constraints 
as those derived by Grimshaw in connection with the reduction of (4 .9 to the constant 
coefficient case, while Manganaro (1991) classified the functions H ( t )  which allow 
(4.4) to possess generalized similarity solutions, giving also criteria to characterize 
compression, amplification or constant amplitude in soliton pulse propagation. 
Moreover, Grimshdw (1979) has shown, by means of the transformation 

(4.6) 

that, whenever I?([) =par-' (pa=const), equation (4.4) reduces to the constant 
coefficient NU equation 

(4.7) iw,=wct+polwI 2 w. 

Since equation (4.7) (cf (1.1)) may be integrated using the inverse scattering method 
(Zahkarov and Shabat 1972), solutions to a wide class of initial value problems for 
(2.1) may, in principle, be determined in two cases, (i) H ( t )  eZR =constant, (ii) 
H ( t )  e2R Cc f- ' .  Each of these imposes just one further condition on the coefficients in 
(2.1), namely 

2 R ' ( t ) = - 2 p ( v _ c o s q + p - s i n q )  

t -ZR'( t )  = - - f  - 2 p ( v _  cos q +p- sin q ) .  

H'(r)  
(i) H ( t )  

H'( t )  
H ( t )  

(ii) 

The useful possibilities having (I* and P* constant are readily analysed, since p 2  

__=_  

__= - 

and H are then constant. Equation (4.5) coupled with case (i) then gives 

so that, in (XI) ,  we must have &*( t )  = p,( [ )  exp[*iq(t)]. This gives U* = * q ( t ) ,  so that 
the only restriction on p S ( f )  and q(r )  arises from (4.2), and is 

tan q = U, fp+ = -v-f p- = tan U+ = -tan U- 

4 ' ( 0  =PP-(t)-P-'P+(t). (4.8) 
In terms of the coefficients in (2.1) this gives the restriction 

t 
-(arg d &+-arg E - ) = ~ ~ ( E - I - - [ E + I  2 .U=(=) 
dt P 

while, in terms of the coefficients in (1.12), we find the conditions 

arg E+ + arg & = 0 

d 
q'(t)=-(argE+)+Re(j+-%)= d t  a- - a+ P+-P-  

(4.9) 
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For the system (1.3), equation (4.9), is satisfied while (4.9), gives q ' ( t )  =2A=0 .  
Thus, in the cases (i) A = O ,  h=O and (ii) A = O  (which was shown in section 1 to 
correspond to equations (1.4) and (1.5) also) the system (1.3) possesses classes of 
solutions A- = *A+ which are derivable from solutions of a single NLS equation. 
Moreover, it is shown in  the appendix that the system (1.6) may be transformed to 
(1.12) with F = = O ,  E,=O, so allowing classes of solutions of the form (4.1). 

Appendix 

Here we describe point transformations which link systems (1.3)-(1.6) to the variable 
coefficient systems of the class (1.12). 

First, we observe that (1.6) can be converted to the form (1.12) in two essentially 
distinct manners: 

(i) U * ( T ,  S) = $*(T)  eXp[i{-h*S - A'n-7 + R,( .)}]ti"( t, X) 

x = S + ~ A T  t=-r = -R: (T)  *A+iis :̂/$, . 
(A.1) 

which yields (1.12) with 

&+ = 82 p- = 8- 6-  = h&+ B+ = hp- i , = O  (A.2) 
2 

while &(T),  Re +*(T)  and the constant A are arbitrary, with h * = h i $ S .  

which transforms (1.6) to (1.12) with 

&+ = t"f: p- = Z'f? & = h&+ F+ = hb- E* = 0. 64.4) 

In case (i), the choices $+ = 1, R ,  = *AT give 

; ~ ~ = G ~ + ( l G ~ J z ~ h l ~ ~ 1 2 ) ~ ~  (A.5) 

which is equivalent to the special case A = 0, K = 0 of (1.3) or K +  = 0, p = 0, F* = 0 of 
(2.12). Equations (AS) are known to possess many similarity reductions (Parker and 
Newboult, 1989). Moreover, the special cases with J'= G-exp(iqJ give rise to the 
explicit solutions of Tratnik (1992). In case (ii), the choices f* = T - ~ ,  R ,  = i A T  give 

iG:= Z&+ t3(lC*la+hlG'jz)G* (A.6) 

while the choices fi = T, R ,  = *AT relate to (2.14) with K ,  = E,  = D = 0. 
Consequently, since the coefficients in (AS) agree with both the forms (2.7) and 

(2.8), the system (1.6) possesses exact similarity solutions derived from Cases 1-3 for 
(A.5). Moreover, the coefficients in (A.6) also agree with (2.8) for K *  =a,  E, = 0, so 
allowing solutions derived from Case 3 for (A.6). 



Similurity reductions for coupled NLS equations 4105 

Similar results apply for the system (1.3), which is transformed to the form (1.12) 
io the two cases: 

(iii) A"(T,S)=&(T)  e x p [ i { - A ( s + ~ ~ ) + R , ( ~ ) } ] ~ * ( t , x )  
(A.7) 

x = s + 2 h r  t = - T  7: = -Rk( 7) * A  + i( 6:/6,) 

which yields (1.12) with 

&+ = 8: p- = 6- 6- = h6, i+ = hp". - 2  

6, 
6, 

L=~-exp[? i (R+-R_) ]  

which transforms (1 .3 )  to (1.12) with 

6- = t2f: p"- = t ' f l  &- = h6+ p"+ = hp"_ 

Also, in these cases it is readily shown that, for A = O ,  the system (1 .3)  yields K * = O  
in (2.12) in Case (iii), and yields K * =  D=O in (2.14) in Case (iv). 

Since the systems (1.4) and (1.5) can each be transformed to (1.3) with A=O,  they 
also may each be related to (1.12) by either (A.7) or (A.9). 

References 

Abdullaev F Kh, Abrarov R M and Darmanyan S A 1989 Opt. Letl. 14 131-3 
Ablowitz M J and Clarkson P A  1991 Solilons, Nonlinear Evolution Equations and h e m e  Scattering, Leef. 

Aceves A B and Wabnih S 1989 Phys. Lett. A 141 37-42 
- 1992 Opt. Left. 17 25-7 
Chang S J, Ellis S D and Lee B W 1975 Phys. Rev. D I I  3572-82 
Christodoulides D N and Joseph R I  1988 Opl. Lett. 13 53-5 
Clarkson P A  and Kruskal M D 1989 I Math. Phys. 30 2201-13 
De Angelis C, Matera F and Wabnitz S 1992 Opt. Lett. I7 850.2 
Rorjannyk M and Tremblay R 1989 Phys. Lett. A 141 34-6 
Grimshaw R 1979 Bac. Roy. Soc. Lond. A 368 377-88 
lnee E I 1956 Ordinary Differential Equations (New York Dover) 
Joshi N 1987 Phys Left. A 125 456-60 
Kivshar Yu and Malomed B A 1989 Opt. Leu 14 1365-7 
Kostov N A and Uzunov I M 1992 Opt. Commun. 89 389-92 
Manakov S V 1974 Sou. Phys,-JETP 38 248-53 
Manganaro N 1991 Nonlinear Waves and Dissipariue Effects ed D Fusco and A Jeffrey (Harlow: Longman) 

Note Math. 149 (Cambridge: Cambridge University Press) 

98-105 



4106 N Manganaro and D F Parker 

Parker D F 1988 Pror 4rh Meeting on Waves and Stability in Continuous Media ed A Donato and S Giambo 

Ryder E and Parker D F 1992 IMA Jnl Appl. Math 49 293-309 
Tratnik M V 1992 Opr. Lett. 17 917-9 
Tratnik M V and Sipe J E 1988 Phys. Rev. A 38 2011-7 
Trillo S, Wabnitz S, Wright E M and Stegeman G I 1988 Op. Leu. 13 871-3 
- 1989 Opt. Commun. 70 166-72 
Wabnitz S, Wright E M and Stegeman G I 1990 Phys Rev. A 41 6415-24 
Whittaker E E and Watson G M 1927 Modern Analysis (Cambridge: Cambridge University Press) 4th ed 
Zakharov V E and Schulman E 1 1982 Physieo D 4 270-4 
Zakhdrov V E and Shabat A B 1972 Sou Phys.-JETP W 62-9 

Casenza: Editel 261-80 


